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Abstract--Two parameters are used in the classification of highly non-cylindrical folds: the hinge line angle and 
the ratio of the length of the cone axis to that of the long axis of the cross-section of the structure at the position 
where the hinge angle was measured. 

If in a non-cylindrical fold a cross-section can be selected so that the hinge angle to measured where the 
cross-section cuts the cone is less than 90 °, and the length of the cone axis x is more than a quarter of the length 
of the long axis y of the cross-section, the fold is a sheath fold. A tight sheath fold, with to < 20 ° and x: y > 1, can 
he termed a tubular fold. A tubular fold is thus an extreme type of sheath fold. 

While sheath folds with to > 20 ° but < 90 ° and x:y > 0.25 hut < 1 can be developed by superimposition of 
layer-parallel simple shear on almost any initial non-cylindrical irregularity, recognizable tubular folds can only 
be developed from initial non-cylindrical progenitors whose long axes are parallel or almost parallel to the later 
shearing direction. Such progenitors of tubular folds can he formed by local shortening subperpendicular to the 
later sheafing direction, or they can form in ductile strike-slip zones subparallel to the shearing direction of the 
later layer-parallel simple shear. 

Tubular folds from the Grapesvare area comply to the definition given above, and they occur in a structural 
setting that is consistent with the models described. 

INTRODUCTION 

DURING recent years highly non-cylindrical folds have 
often been described under the names sheath fold and 
tubular fold. The term sheath fold was introduced by 
Carreras et al. (1977), and has been used by Quinquis et 
al. (1978), Minnigh (1979), Berth6 & Brun (1980), 
Cobbold & Quinquis (1980), Henderson (1981), 
Mattauer et al. (1981), Lisle (1984), Andreasson et al. 
(1985), Faure (1985), Talbot & Jackson (1987), Agar 
(1988) and Brun & Merle (1988), to mention but a few. 
Tubular fold is a term that seems to have been used for 
the first time by Hansen (1971), who provided beautiful 
illustrations of this type of structure. The term was later 
adopted by Williams & Zwart (1977), Lister & Price 
(1978), Andreasson et al. (1985) and others. However, 
some time before any of these papers appeared, Carey 
(1962, p. 128) described folding "produced by a tongue 
rising steeply in one place", and he continues: "each 
surface is shaped like a cap, which rests over a similar cap 
below it and so down. This is the paraboloidal  folding". 
The term paraboloidal was revived by Henderson 
(1983). 

Highly non-cylindrical folds with sharp hinge line 
bends (hairpin bends--Ghosh & Sengupta 1987) have 
been amongst structures termed dome and basin struc- 
tures (Quirke & Lacy 1941, Tobisch 1966), closed folds 
(Balk 1953), cone and cylinder structures (Ramsay 
1958), quaquaversal folds (Quirke & Lacy 1941, Mertie 
1957) and eyed folds (Nicholson 1963) or 'eye-folds' 
(Dalziel & Bailey 1968). In the fold nomenclature of 
Williams & Chapman (1979) sheath folds are non-cylin- 
drical folds with high R values (see their paper for 
definition) that pass into isoclinal domes. 

DEFINITION OF SHEATH FOLDS AND 
TUBULAR FOLDS 

In spite of all the attention that has been given to 
sheath folds and tubular folds in recent years, the term 
sheath fold in particular has been used rather loosely, 
sometimes to cover almost everything that can give rise 
to a closed outcrop pattern. Sheath folds were not 
clearly distinguished from other non-cylindrical folds 
until Ramsay & Huber (1987) defined a sheath fold as a 
fold with a hinge line variation of more than 90 °, while 
tubular folds have never been strictly defined at all. 

The impression gained by the author from her own 
field work as well as from the literature (e.g. Dalziel & 
Bailey 1968, Williams & Zwart 1977, Andreasson et al. 
1985, Faure 1985) is that in many areas of high deforma- 
tion, sheath folds with hinge line angles less than 20 ° are 
common; many authors mention hinge line angles 
approaching zero. Furthermore, as will be shown later, 
such tight sheath folds cannot be produced by the 
generally accepted mechanisms for the formation of 
sheath folds in general. Consequently it is considered 
that a separate term for these folds is warranted, and that 
the familiar name tubular f o ld  is used for such very tight 
sheath folds. Tubular folds are thus at one end of the 
spectrum of folds covered by the term sheath fold. Most 
other sheath folds have much wider hinge angles, and 
the preconditions for their formation are much less 
exacting than those for the formation of tubular folds. 

Although in the foregoing emphasis has been placed 
on the hinge angle to (see Fig. la), this angle alone is not 
enough to define a fold as a tubular fold. Figure l(b) 
illustrates this point. In this figure both fold a and fold d 
have the same value close to 20 ° for to, yet while fold a is 
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Fig. 1. (a) Geometrical position of the x, y and z axes and the angle ~ 
of a tubular fold. (b) xy sections through non-cylindrical folds, a, b, c 
and d have w < 20 ° measured at section 1, e, f and g have w < 90 ° 
measured at section 2 and h has to > 90 ° at section 3. a, b and c have 
x:y ratios >1, d, e, f have x:y ratios <1 but >1/4. g and h have x:y 
ratios <1/4. a, b, c are tubular folds, d, e and f are sheath folds, g and 

h are non-cylindrical folds. 

remarkable and is a tubular fold, fold d is neither very 
remarkable nor is it a tubular fold. In order  to classify a 
fold as tubular, it must be possible to draw a closed 
cross-section somewhere across the fold so that to mea- 
sured at this position is <20 ° and the length of the long 
axis y of this cross-section is less than the distance of the 
section from the apex of the fold, i.e. is less than the cone 
axis x (see Fig. la).  For  sheath folds in general the x : y  
ratio must be greater than 1 : 4. 

Note that in describing as opposed to defining a sheath 
or tubular fold, the value quoted for to should be the 
minimum hinge angle measurable in the fold. 

Cross-sections of tubular folds have more or less 
regular closed forms, and quite often the individual layer 
boundaries have rather regular elliptical shapes, 
although they are sometimes at tenuated at one end 
(Figs. 12 and 13). The width to length ratio, i.e. z :y  (Fig. 
la) ,  is often between 1 : 1 and 1 : 10. This is for example 
the case in the Grapesvare area, which is described later, 
and similar ratios seem to be common elsewhere to 
judge from published descriptions and photos (Hansen 
1971, Williams & Zwart  1977, Lister & Price 1978, 
Minnigh 1979, Cobbold & Quinquis 1980). Williams & 
Zwart (1977) recorded a range of z : y  ratios from 1 : 1 to 
1 : 25. The longest axis of the cross-section, the y axis, is 
often close to horizontal or close to vertical, but may 
have any orientation. Tubular  folds (and sheath folds in 
general) with apices pointing in opposite directions seem 
to be equally frequent.  

Although experience suggests that tubular folds with 
z : y  ratios less than 1 "25 are rare, this impression may 
arise because in practice tubular folds with z: y ratios less 
than 1:25 are difficult to recognize in cross-sections. 
However  they may be recognized in sections that contain 

the y axis but make a small angle to the x axis. There  
seems to be no good reason for putting any restriction on 
the value of the z : y  ratio of a structure to be called a 
tubular fold. 

In conclusion: tubular folds and sheath folds are fold 
structures with closed cross-sections. Tubular  folds have 
hinge line angle to < 20 ° and x :y > 1. For sheath folds 
the corresponding values are to < 90 ° and x : y  > 1/4. 
The definitions of these folds are thus purely geometric. 

DEVELOPMENT OF SHEATH FOLDS AND 
TUBULAR FOLDS 

Several models have been proposed to explain the 
formation of sheath folds. Some of these are discussed 
below and more than one model may be valid. 

In many areas there appears to be a connection 
between shear zones (e.g. in nappe complexes) and the 
occurrence of sheath folds (Ramsay & Huber  1987), 
many of which are tubular folds. It is therefore reason- 
able to relate these phenomena and suggest that the 
mechanism of formation of sheath folds and tubular 
folds has something to do with simple shear deformation,  
at least in these environments. 

It should however be emphasized that under certain 
circumstances sheath folds may form in other  deforma- 
tional regimes, such as those of pure shear, either plane 
strain or constrictional (Borradaile 1972), diapirism or 
three-dimensional differential (i.e. non-planar) flow (cf. 
Bhattacharji 1958, Nicholson 1963, Hansen 1971, 
Ramsay & Sturt 1973). For  reasons of space these cases 
are not considered here. 

The models discussed below all relate to deforma- 
tional regimes with a dominant component  of subhori- 
zontal simple shear as found in some nappe complexes. 
The results are of course equally valid for shear zones 
with other  orientations. An explanation of the formation 
of sheath folds that has gained broad acceptance during 
the last few years, almost to the point where it is used 
unquestioningly as the explanation (e.g. Leon & 
Choukroune 1980, Henderson 1981, Mattauer  et al. 
1981, Malavieille 1987), was given by Cobbold & 
Quinquis (1980) as their model 1. Cobbold & Quinquis 
showed that sheath folds develop when layers containing 
small irregularities, such as gentle bumps and dents, are 
involved in an overall layer-parallel simple shear. 

A similar model was proposed by Quinquis et al. 
(1978), Minnigh (1979) and Hibbard & Karig (1987) (see 
also Ramsay 1980 and Ragan 1985, p. 255). These 
authors have suggested that the "initial irregularities" 
were syn-shear derived, slightly non-cylindrical folds 
which had main axial direction at right angles to the 
shearing direction of an overall layer-parallel mainly 
simple shear deformation. 

Both these models may afford satisfactory explana- 
tions for the occurrence of non-cylindrical folds and 
sheath folds in shear zones. Tubular  folds that fulfil the 
requirements of the definition given in the foregoing 
cannot, however,  have formed by either of the processes 
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Fig. 3. (a) Longitudinal and cross-sections through an oval bump (or 
an open periclinal fold) before shearing; (b)-(d) are sections along the 
xz plane, the yz plane and the xy plane, respectively, of the tubular fold 
that has developed from the oval bump after a "hinge parallel' dextral 

shear of ~' = 10. A-A in (b) and (d) show the position of (c). 

Fig. 2. (a) Section through a circular bump (or low dome) before 
shearing; (b)-(d) are sections along the xz plane, the yz plane and the 
xy plane, respectively, of the sheath fold that has developed from the 
circular bump after a 'layer-paraller dextral shear of ), = 10. A-A in 

(b) and (d) show the position of (c). 

described, except for tubular folds with extremely low 
z: y ratios that would hardly be recognizable in outcrops. 
The theoretical background for this conclusion is treated 
in detail below. 

In the following, folds with flat-lying axes either sub- 
perpendicular or subparallel to the later simple shear 
deformation are termed longitudinal and transverse 
respectively. Note that longitudinal and transverse refer 
to the length of the nappe complex, or to the orogen. 

Transverse structures, such as oval bumps and dents 
or anticlines and synclines with culminations and depres- 
sions respectively and with their main axes parallel to, or 
at a small angle to, the shearing direction, can develop 
into tubular folds with z : y  ratios comparable to those 
commonly seen in nature, if they are exposed to 
sufficient overall layer-parallel simple shear. 

Figure 2(a) shows a cross-section through a gentle 
dome with circular ground plan and interlimb angle 
160 ° . When this dome has been horizontally sheared 
with ), = 10 (dextral shears are given positive values) it 
will develop into a sheath fold. Figure 2(b) shows a 
section through this fold parallel to the ac-kinematic 
plane which is the xz  plane of the fold (compare with Fig. 
1). Figures 2(c) & (d) are sections parallel to the yz and 
the xy  planes of the fold, respectively. The to angle is 
58.9 ° (seen in Fig. 2d) while the lowest interlimb angle as 
seen in Fig. 2(b) is 9.4 °. The z : y  ratio can be seen from 
Fig. 2(c) and is 0.145 (1/7). The fold is a sheath fold 
according to the definition used in this paper. To make a 
tubular fold from the original dome in Fig. 2(a), a shear 
of ~ = 32 would be needed. The angle to would then be 
20 °, the smallest interlimb angle - 0 . 6  ° and the z : y  ratio 
~1:31.  The tubular fold would be extremely thin and 
would hardly be identifiable. 

Figure 3(a) shows sections parallel to, and at right 
angles to, the main axis of a transverse anticline with an 
axis culmination, i.e. a periclinal fold. The hinge line 
angle (measured in the left section) is 160 ° and the 
interlimb angle is 90 °. Figures 3(b)-(d) show the sections 

parallel to the xz ,  the yz  and the xy  planes, respectively, 
after a shear of y = 10 parallel with the axis. The angle 
to (in Fig. 3d) is 11.36 ° and the smallest interlimb angle 
(in Fig. 3b) is 9.4 ° while the z : y  ratio is 0.82 (5:6). The 
structure is thus a tubular fold. 

From the equations derived in the Appendix, a dia- 
gram (Fig. 4) has been constructed for the case of a 
layer-parallel simple shear superposed on initially 
upright circular domes (or basins), a0 and a are the 
initial and final interlimb angles measured in the xz  plane 
(which is parallel to the ac-kinematic plane) while fl0 and 
fl are the interlimb angles in the xy  plane (see Figs. A1 
and A2 in the Appendix). In this case fl is always the 
largest interlimb angle and is thus the hinge line angle in 
the final fold, i.e. fl = to. 

It can be inferred from Fig. 4 that for gentle domes 
which have large a0 and fl0 values, tubular folds can only 
form when ~, is large, in which case the z :y  ratios are 
small. Most natural tubular folds have a,  fl and z : y  

values comparable to those in the lower left quarter of 
the diagram, and if they evolved from initial circular 
deflections, these must have been rather steep sided. A 
well developed dome and basin pattern may evolve to a 
system of tubular folds, but minor layer irregularities 
cannot. The open triangle in Fig. 4 refers to the case 
shown in Fig. 2. 

In the case of upright periclinal folds with the main 
axes of the folds either parallel to the shearing direction 
(ct0 > fl0) or at right angles to it (a0 < fl0) (i.e. transverse 
and longitudinal folds, respectively) the same graph may 
be used. While both a and z : y  in this case are functions 
of a0 and of the intensity of the shear, the z: y ratio is also 
dependent on the initial length: width ratio of the oval 
ground plan of the original periclinal fold (see equations 
A l l ,  A12, A1 and A2 of the Appendix). l I is measured 
parallel to the shearing direction and 13 perpendicular to 
it. Transverse periclinal folds thus have 11 :/3 greater than 
unity. The fl angle is a function offl0 and the shear value 
(see equation A6 in the Appendix). 

To use Fig. 4 in the case of a periclinal fold the value 
of a and of z :y should be read off using the appropriate 
values of a0 and ),. The true value of z : y  is found by 
multiplying the read-off z: y value by Ii : 13. The value of 
fl is found in the same diagram from appropriate values 
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Fig. 4. Diagram showing values of a ,  fl and z :y as functions of  a0 = fl0 (see text and Figs. A 1 and A2 in the Appendix) and 
y for the case of initial circular domes or basins overprinted by an overall layer-parallel simple shear, in this case/~ = to. The 
diagram may also, with some modifications discussed in the text, be used for initial periclinal folds that are sheared parallel 

with or orthogonal to their axes. The triangles refer to Figs. 2 and 3; see text for explanation. 

of fl0 and 7. to is equal to either a or fl (whichever is 
largest). The open triangle in Fig. 4 gives a and the filled 
triangle fl for the case illustrated in Fig. 3. To find the z: y 
value in this case, the value read off at the open triangle 
should be multiplied by 11 : 13 which in this case is 5.65. 

It is seen that from initial periclinal transverse folds 
tubular folds comparable to those found in nature are 
easily developed, while this is not possible from an initial 
longitudinal fold which has 11 : 13 less than unity. 

Associations of  tubular folds and transverse folds 

As shown above, minor initial deflections in otherwise 
plane layers that have been subjected to layer-parallel 
simple shear may be the source of non-cylindrical folds, 
sheath folds and, in special cases (if the deflections are 
more or less parallel to the shearing direction), tubular 
folds. Such folds might be expected here and there 
in an otherwise planar sequence. There should be no 
cylindrical folds associated with them. 

It is however a characteristic feature of many areas 
that tubular folds are intimately associated with a sub- 
parallel system of cylindrical or slightly curved folds 
(e.g. Mattauer et al. 1981, Ewans & White 1984, 
Gaudemer & Tapponier 1987, Malavieille 1987), see 
also Figs. 12 and 13. Such patterns may result from a 
simple shear superimposed on transverse folds with 
enveloping surfaces (overall layer orientation) parallel 
or subparallei to the shear plane. Occasional axial 
culminations and depressions, or interference structures 

with longitudinal folds, may give rise to tubular folds 
(Figs. 5, 6 and 8). 

Transverse fold systems consisting of major and minor 
recumbent folds have been described from many places 
(e.g. Carmignani et al, 1978, see Olesen & Serensen 
1972 for other references). Such folds are frequent in the 
Grapesvare area, which is described in a later section, as 
well as in the rest of the Seve nappe complex and in fact 
in most of the Scandinavian Caledonides (see articles in 
Gee & Sturt 1985). 

It is hardly realistic, as many have done (Bryant & 
Reed 1969, Williams 1978, Ewans & White 1984 among 
many others), to consider these folds as having been 
passively rotated from an initial longitudinal orientation 
during an overall layer-parallel simple shear deforma- 
tion (Figs. 8a & b) (see also Ghosh & Sengupta 1984, 
Hibbard & Karig 1987). Such a reorientation would 
imply simple shear values not less than y = 100-150. 
The resulting extensions along the fold axes would 
probably exceed 1000% (Skjernaa 1980) and the 
extension in the fold limbs would be much larger. The 
exact figures are very dependent on the original and final 
orientations of the folds, but certainly strain values of 
this magnitude would cause the folds to be obliterated, 
or at least only remnants of them would have been 
preserved, probably as attenuated lenses of rootless, 
intrafolial folds (cf. Meneilly & Storey 1986). Oblitera- 
tion of folds also occurs in glaciers, e.g. in the salt glacier 
at Kuh-e-Namak in Iran (Talbot 1979, Talbot & Jackson 
1987) when folds with axes initially oriented across 
the glacier are reoriented towards the flow direction. 
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Fig. 5. (a) Cylindrical fold before shearing, (b) after a horizontal hinge line-parallel dextral shear and (c) after a horizontal 
shear at 15 ° to the axial direction (~, = 10). The lines on the upper surface are the deformed grids shown in (a). The ellipses 
at the fronts and sides of the blocks are strain ellipses in these sections. (d)-(f) are similar to (a)-(c) except that the initial 
fold in (d) is periclinal. Tubular folds are developed in (e) and (f); 1,2 and 3 are sections. Note that all the blocks are drawn 

in perspective. 

Brun & Merle (1988) gave an example of longitudinal 
folds which retained their orientation and even their 
cylindricity after large simple shears. 

Other mechanisms, probably implying axial parallel 
shortening, must therefore be sought to explain indis- 
putable rotations of folds through almost 90 ° in a plane 
that is parallel to the overall layer orientation. 

In cases where the initial fold axes are parallel to the 
later shearing direction, cylindrical folds will maintain 
both their axis orientation and their appearance in cross- 
section, and are thus capable of surviving very intense 
shearing; this is shown in Figs. 5(a) & (b). A stretching 
lineation will develop on the limbs of the folds, and for 
large shears it will rotate to subparallel the fold axis (for 
y = 20 the angle between the stretching lineation and 
the fold axis becomes less than 3°). 

If the axes of the cylindrical folds formed a small angle 
to the later shearing direction, but still lay in the shear 
plane, they become overturned and tightened and the 
limbs become thinned (see Fig. 5c). The orientation of 
the axes is maintained and the stretching lineation in the 
limbs of the folds becomes subparallel to the fold axes 
for large shears. 

If the initial transverse folds were not cylindrical 
but for example contained anticlinal axial culminations 
(Fig. 5d), these would evolve to form sheath folds and 
eventually tubular folds during the simple shear 
deformation. This case is illustrated in Figs. 5(e) & (f) 
for axis-parallel shear and shear at a small angle to the 
fold axis, respectively. In the first case the cone axis of 

the tubular fold becomes subparailel to the fold axis of 
the cylindrical parts of the fold when large shears are 
superimposed (for a0 = 160 ° and y = 20 the angle 
between the cylindrical fold axis and the tubular fold 
cone axis becomes about 3°). In the second case (Fig. 5f) 
the cone axis becomes subparallel to the shearing direc- 
tion. The small angle between the cone axis of the 
tubular fold and the axis of the cylindrical parts of the 
fold approximates the initial angle between fold axis and 
shearing direction. However, if the fold axis did not start 
in the shear plane, but had a low plunge to the rear in 
relation to the shearing direction it would slowly rotate 
towards this direction and eventually approach the cone 
axis of the tubular fold. The same result may be achieved 
if the orientation of the shear plane was not completely 
constant during the shearing event. Figure 6 shows 
examples of various cross-sectional patterns that may 
develop from different initial fold geometries when 
slightly oblique simple shears are superimposed on 
them. 

It would be possible to set up mathematical relations 
for cases of oblique simple shear, but the equations 
would be long and tedious. A lucid way of representing 
the result of simple shear deformation superposed on 
periclinal folds with their main axes at an angle 0 to the 
shearing direction is to draw a structural contour map for 
the pre-shear structure. Each structure is then translated 
along the shearing direction by a distance that is found 
by multiplying the ), value by the distance to a reference 
shear plane (see Fig. 7). From the resulting structural 
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Fig. 6. Examples of different initial geometries which may give rise to tubular folds when horizontal shears parallel to. or 
at a small angle to, the main axial directions are superimposed on the structures. Possible cross-section patterns after slightly 

oblique shears are shown. 

contour map for the final structure, sections may be 
constructed to measure to, z:y, etc. For a specific initial 
geometry of a periclinal fold and a fixed value of 7, 
increasing values of the angle 0 between the fold axis and 
the shearing direction will result in an increase of to and 

(a) 

(c) 

(d) 

if) 

Fig. 7. Structural contour maps showing (a) unsheared periclinal 
antiform with equal hinge line plunges in both directions. (b) The same 
anticline after horizontal shearing (y = 10) parallel to the main axial 
direction. The tubular fold developed has to -- fl = 11". (c) The 
periclinal fold from (a) after a horizontal shear (y -- I0) in a direction 
making an angle 0 = 15" to the main axis. The sheath fold that has 
developed has to = 22*. (d) Unsheared periclinal antiform with verti- 
cal hinge line at one end. (e) The anticline from (d) after a shear 
(y = 10) in the direction of  the main axis; to = 11" in the resulting 
tubular fold. (f) The anticline from (d) after an oblique shear 

(0 --- 15"); a tubular fold with to = 11" has developed. 

a decrease of z: y (Figs. 7b & c). Tubular folds with z: y 
in the order of 1 : 1-1 : 25 only form when the 0 values are 
small. Non-cylindrical fold segments with a steep hinge 
line plunge in one direction (Fig. 7d), produce tubular 
folds with smaller values of to for similar values of ), and 
0 if simple shear is oblique (see Figs. 7c & f). Transverse 
periclinal folds similar to that in Fig. 7(e) may be formed 
above circular obstacles on the floor of the shearing 
system and evolve into sheath folds and tubular folds 
(Brun & Merle 1988). A similar pattern may arise when 
asymmetric longitudinal folds override the crests of 
larger transverse folds, or vice versa (Figs. 8c & f) (see 
also Platt & Lister 1985). 

Figures 8(a) & (c)-(g) show initially subhorizontal 
longitudinal folds that are first rotated to a moderately 
or steeply dipping position by the overprinting of trans- 
verse folds. During the subsequent simple shear they are 
rotated relatively rapidly (Skjernaa 1980) towards the 
shearing direction. They end up as transverse folds 
themselves and at the same time produce tubular folds 
at their culminations above the crest of the major 
transverse fold. The theoretical cross-sections closely 
resemble some natural outcrop patterns (cf. Figs. 8k & 
j). 

Origin of progenitors of tubular folds 

Tubular folds are mostly found in rock sequences built 
up of layers with alternating rheoiogical properties. 
Such layered sequences seem to buckle when they are 
shortened while they behave much more passively, i.e. 
by homogeneous thinning, when extended. In many 
areas, e.g. the Grapesvare area, boudinage and necking 
are seldom seen, except when exceptionally competent 
layers are incorporated. 
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Fig. 8. (a) and (b) A layer containing a fold is exposed to a layer-parallel shear at fight angles to the fold axis. The fold axis 
may become slightly non-linear, but no real rotation takes place. (c) The layer in (a) becomes folded around a fold axis at 
right angles to the first fold. (d) Sheafing along the new fold axis rotates the first fold, and a tubular fold is formed at the cusp 
bend of the first fold axis. (e) Section along the dashed line in (d). (f) and (g) Similar to (c) and (d), but several early folds 
are involved. (h) and (i) Sections perpendicular and parallel to the main axis in (g). Marks in (i) show position of (h). (j) 
Similar to (h) except that in this case the shearing has been slightly oblique. (k) Sketch of the structures from the Grapesvare 

area shown in Fig. 12 (d); compare with (j). 

The initial structures that are the progenitors of 
tubular and other  sheath folds probably often originated 
from the overprinting of structural elements. The fold 
phases that produced these structures may predate the 
shearing process and nappe emplacement,  but the folds 
may equally well have developed at different times 
during nappe emplacement as a consequence of local 
heterogeneities in the shearing process. The previous 
existence of some kind of transverse fold seems to be a 
prerequisite for the formation of a tubular fold in an 
overall layer-parallel simple shear regime. 

It cannot be too strongly emphasized that 'fold phases' 
are not isochron time markers,  especially not when they 
are formed by a rotational deformation (Williams & 
Zwart 1977, Coward & Potts 1983, Coward 1984). 

Where  and when each type of structure forms are 
dependent  not only on the rheological properties of the 
layers and the homogeneity of the flow (Marcoux et al. 

1987), but also on the local orientation of the deforming 
surfaces in relation to the shear plane and the shearing 
direction (Escher & Waterson 1974, Ramberg & Ghosh 
1977, Skjernaa 1980) and on local deviations from plane 
strain, i.e. whether  or not there is a longitudinal strain 
along one or more of the kinematic axes. The diachron- 
ism of fold generation is well illustrated in flowing and 
deforming systems such as glaciers (Hudleston 1977, 
Talbot 1979). 

Price (1972) gave an account of "diachronism in tec- 
tonic overprinting" and on the basis of the Prandtl cell 
model he examined the internal flow both in glaciers and 
in orogenic nappes. This model involves a shift from 
extension to compression along the kinematic a-axis 

when a volume of rock moves from the internal towards 
the external parts of the deforming system. The latter 
situation gives rise to a system of longitudinal folds, 
while transverse folds are not developed (cf. the experi- 
ments described by Brun & Merle 1988). 

The Prandtl cell model is a two-dimensional plane 
strain model that does not consider longitudinal strain 
along the kinematic b-axis. However ,  longitudinal strain 
along the nappe length is possible, as for example in 
response to culminations and depressions in the floor of 
the nappe (Butler 1982, see also Sanderson 1982). A 
longitudinal shortening may lead to the formation of 
transverse folds. 

Heterogeneities within the deforming complex, for 
example competent  boudins, or at its boundaries may 
cause the stream lines of the flow to crosscut the layering, 
and folds with axes at a large angle to the flow direction 
are then formed (Hudleston 1977, Cobbold & Quinquis 
1980, Ghosh & Sengupta 1984, Hanmer  1986, Talbot & 
Jackson 1987, Brun & Merle 1988). These folds may 
overprint or be overprinted by transverse folds (Fig. 8) 
and result in superimposed structures which are likely 
progenitors of folds or, provided they have the right 
geometrical properties as described in the foregoing, of 
tubular folds. 

Tubular  folds formed by the combination of shear 
along stream lines that crosscut the layering with a 
concomitant tangential shortening along the developing 
folds were described by Talbot & Jackson (1987) from 
the bottom of salt diapirs (see especially their fig. 13). 
The radial flow of salt from a horizontal source layer 
towards the vertical cylindrical stem of the diapir 
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Fig. 9. Development of transverse folds in steep wrench shear zones. Left block before shearing, right block after a shear 
of y = 3. Drawn in perspective. 

involves a pronounced tangential contraction. Such 
large shortening at right angles to the flow direction is 
hardly likely during nappe emplacement. 

Another place where transverse folds may develop is 
in temporary ductile lateral or oblique ramps, i.e. in 
strike-slip shear zones at large angles to the orogenic 
front (see Fig. 9 and Meneilly & Storey 1986). Such 
shear zones may form the link between two nappe 
sections that moved with different velocities (Coward 
1984) or they may be ductile equivalents of tear faults 
(cf. Leon & Choukroune 1980, Fischer & Coward 1982, 
Rattey & Sanderson 1982, Ridley 1982, Coward & Potts 
1983, Lagarde & Michard 1986, Brun & Merle 1988). 

Folds that are formed in strike-slip shear zones like 
those shown in Fig. 9 start with their axes in the extension 
field of the strain ellipsoid. A strike-slip shear of y = 3 
would cause a maximum shortening of 70% in a direction 
73 ° from the shearing direction. The resulting folds 
would have axial directions at an angle between 14 and 
17 ° to the shearing direction, and the extension along the 
fold axes would be about 190-230%. The variation is 
due to uncertainty as to whether the folds are rotated as 
passive markers or whether they follow the maximum 
extension direction. Brun & Merle (1988) produced 
transverse folds in wrench shear zones; these folds were 
initiated over longitudinal ridges in the floor. 

The amounts of stretching and rotation involved in the 
formation of transverse folds in ductile wrench shear 
zones are not nearly as large as would be the case if the 
transverse folds had originated parallel to the nappe 
front and were later rotated during a roughly layer- 
parallel simple shear (Meneilly & Storey 1986). 

If the transverse folds develop axial culminations and 
depressions, as they probably do--at  least at the borders 
of the strike-slip shear zone or if they interfere with 
crossing folds, they may evolve to form tubular folds 
when the 'normal' overall layer-parallel simple shear is 
superimposed on them. Sanderson (1982) gave math- 

ematical solutions to strain calculations for combined 
wrench- and thrust-type shear. 

TUBULAR FOLDS IN THE GRAPESVARE AREA 

The Grapesvare area is situated in northern Sweden, 
just north of the Arctic Circle and about 30 km from the 
national border between Sweden and Norway. Tectoni- 
cally it lies within the Caledonian Seve nappe northeast 
of the Nasafj~ill window. The area has been described by 
Kulling (1982) and Andreasson et aL (1985). Dallmeyer 
& Gee (1986) give an account of the Caledonian 
framework and evolution. 

The dominant lithological units of the Grapesvare 
area are a semipelitic mica schist and a layered 
feldspathic quartzite, called the Juron quartzite by Kul- 
ling (1982), which in high-strain zones are transformed 
to flagstones. Folded primary sedimentary structures 
recognizable in a few localities pass laterally into the 
general layering of the quartzite (fig. 5 in Andreasson et 

al. 1985). In the mica schist the original sedimentary 
layering is completely transposed, except perhaps in 
occasional quartz-banded parts of the unit, where how- 
ever the origin of the quartz bands is uncertain. The 
Grapesvare area is known for its boudins of eclogite and 
metadolerite (see the references given above) which 
may have introduced heterogeneities into the deforma- 
tion. 

With few exceptions, the occurrence of tubular folds 
in the area is confined to the banded feldspathic 
quartzite, probably because the layered structure pro- 
moted an early active folding, while the mica schist was 
passively rotated and homogeneously shortened. The 
various amounts of penetrative strain that were taken up 
by the two rock types may also have led to obliteration of 
early formed tubular folds in the mica schist. In one or 
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two places tubular folds have been found in quartz- 
banded varieties of the mica schist. 

The meso- and microstructures of the Seve nappe in 
general show that it has suffered a relatively large pene- 
trative shear strain which was heterogeneous with 
respect to intensity. Narrow internal high shear 'thrust' 
zones bound 'thrust slices' that show lower internal 
strain (Zwart 1974, Williams & Zwart 1977). Williams & 
Zwart mentioned rotational strains that have resulted in 
maximum shortening up to 90%. In simple shear this 
would need a shear strain of 10, a figure that is in keeping 
with the formation of tubular folds. Actually much 
larger strains are probable in the pelites and the 
flagstones. The main schistosity of the rocks was 
developed by this penetrative deformation during the 
emplacement of the nappe. Williams & Zwart (1977) 
divided the folds of the Seve nappe into two groups. 
Group I contains several generations of mesoscale folds, 
all of which contribute to the regional foliation, although 
the exact relationship between folds and foliation is not 
straightforward. Group 1 folds are reclined cylindrical 
or non-cylindrical folds or even tubular folds. They are 
thought to have originated before or during the nappe 
emplacement. 

Group 2 folds comprise both meso- and macrofolds 
that clearly fold the regional foliation as well as the 
internal high strain zones. 

Shape determinations 

The broad division of folds into Group 1 and 2 as 
described in Williams & Zwart (1977) is more appro- 
priate for the structures in the Grapesvare area than the 
usual classification of folds as belonging to separate well 
defined fold phases. When two folds seem to belong to 
the same fold phase, one of them may be older and the 
other one younger than two other folds that would also 
be viewed as belonging to one fold phase. The conse- 
quence of this would be the establishment of a large 
number of fold phases. It is concluded that during the 
nappe emplacement, folds were continuously formed as 
a result of internal ductile deformation in the nappe. 
While folds with one axial direction formed in one part 
of the nappe, folds with another axial direction formed 
at the same time in another place and vice versa. Even 
the tubular folds probably developed continuously 
whenever the appropriate geometrical configurations 
arose somewhere in the deforming system. 

Except for some open late folds, the mesoscale folds 
in the Grapesvare area, including the tubular folds, 
belong to the Group 1 folds of Williams & Zwart. In the 
tubular folds the cleavage is always subparallel to the xy 
section of the fold (see Fig. 13). In other mesoscale folds 
the cleavage is axial planar, but in some cases two 
generations of cleavage were recognized. The older of 
these was folded by the folds to which the younger 
cleavage is axial planar. Except in fold hinges both 
cleavages contribute to the regional foliation. Stretching 
lineations are subparaUel to the fold axes but small 
deviations are commonly seen. In tubular folds the 

lineation is mostly subparallel to one hinge line rather 
than to the central cone axis. Two lineations at a small 
angle to each other were observed in some places. 

Shape parameters from a total of 54 tubular folds or 
other sheath folds were measured. Eight samples con- 
taining 12 tubular folds were sliced and thoroughly 
examined. The others were measured in the field and on 
photos. Some occurred in talus blocks, z:y ratios were 
measured in sections thought to be at right angles to the 
cone axis, but when the exact position of this was not 
known the orientation of the lineation was taken as a 
sufficiently accurate indicator. In some cases z 'y  ratios 
were calculated from measurements on slightly oblique 
sections. In some asymmetric tubular folds it was difficult 
to establish the exact position of the z and y axes. 

The spread of 140 z:y ratios from the 54 folds is from 
0.08 to 1.00 with most values lying between 0.2 and 0.6 
(Fig. 10b). For different layers in one fold the deviation 
seldom exceeds 0.15, which indicates that layer thick- 
nesses generally vary around the fold in accordance with 
the z: y ratio (compare with equation A20 in the Appen- 
dix). Exceptions to this are however not uncommon. 
There is no general trend in the variation of z:y from 
outer to inner layers in the folds. Because of the limited 
number of measurements and the possibilities of minor 
errors only an incomplete picture of the tubular fold 
shapes in the area has been obtained, which is however 
thought to illustrate the general trend (Fig. 10). 

to angles were measured on 25 layers in the 12 tubular 
folds and are all less than 20 ° , except one where only the 
apex area was enclosed in the sample (fold 5C, Fig. 10a). 
As in each fold x values exceed y values, the structures 
really are tubular folds in accordance with the definition 
given in this paper. 

In the field hinge line angles were measured in six 
tubular folds, mostly from talus blocks. The values range 
from 2 to about 20 °, except for one of 50 ° that was 
probably measured near the apex. The presence of 
tubular folds pointing in opposite directions was estab- 
lished in some cases. In sample 3 (Fig. 13e) two tubular 
folds that point in the same direction have parallel axes, 
while the third, that is opposite, has an axis at 7 ° to the 
others. Mesoscale folds other than tubular folds are 
often subparallei to the hinge lines of nearby tubular 
folds. 

The tubular folds in the Grapesvare area most 
probably originated by shearing of the types of structure 
shown in Figs. 5 and 8 or from shearing of more complex 
interference patterns (compare Figs. 12 and 13 with 
Figs. 5, 6 and 8). In either case the development of 
transverse folds with their axes more or less parallel to 
the shearing direction seems to be a prerequisite for the 
formation of the tubular folds. The transverse folds may 
have formed in regions which have accommodated a 
component of pure shear with a shortening parallel to 
the length of the Caledonides, or they may have formed 
in strike-slip shear zones in the manner illustrated in 
Fig. 9. Strike-slip shear zones at large angles to the 
Caledonian front have been reported from the Madd~ive 
area only 20 km west of Grapesvare (Nordgren 1987). 
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Fig. 10. (a) Plot showing to and z:y  values from 12 tubular folds contained in eight samples. Symbols refer to different 
tubular folds. 3A, 3B and 3C are different folds from one sample, as also are 5A, 5B and 5C. (b) Histograms showing z :y  

values measured in samples (upper histogram) and in the field and from photos (lower histogram). 

Orientation o f  mesoscale  structures 

The orientation of both the tubular folds and other 
mesoscopic folds in the Grapesvare area remains some- 
what puzzling. In other parts of the Seve nappe the 
tubular folds together with other 'transversal' folds are 
oriented approximately perpendicular to the orogenic 
front (Williams & Zwart 1977), as should also be 
expected from the model presented in this paper. Even 
in the nearby Maddhive area rare sheath folds and tight 
recumbent so-called Fl folds in the Juron quartzite have 
axes plunging WNW subparallel to the inferred shearing 
direction during the overthrusting of the nappes 
(Nordgren 1987). However, in the Grapesvare area the 

N 

Fig. II .  Contoured stereographic plot showing distribution of axes of 
67 mesoscopic folds from a small part of the Grapesvare area. Contours 
at 2%, 10% and 25%. Triangles mark the orientation of five tubular 
fold axes. The tubular fold with a steep plunge to the WSW is disturbed 

by scar folding between eclogite boudins. 

tubular folds, together with recumbent mesoscale folds, 
mostly plunge in directions between 45 and 90 ° (see Fig. 
11 and Andreasson et al. 1985, fig. 3). 

This discrepancy could be explained by a speculative 
model involving late large-scale folding of the area 
around E-W axes. Kulling (1982) described the Juron 
quartzite as lying in the core of a major recumbent 
antiform, the orientation of which is however not clear 
from his description. The unravelling of the major struc- 
tures should be given a high priority in future mapping 
projects in the area. 

The macrofolds (km size) of the Grapesvare area are 
S-verging recumbent folds with E-W axes overprinted 
by open E-W folds (F 2 and F3 of Andreasson et al. 1985). 
The abnormal orientation of the tubular folds and 
related mesoscale folds could be the result of a simple 
rotation of the layers containing them into the inverted 
limb of a major recumbent fold with E-W axis. This 
would imply that the investigated area is inverted and 
occupies the lower limb of a macroscopic recumbent 
anticlinorium with the large F 2 folds of Andreasson etal.  
(1985) as the parasitic second-order folds. As the large 
recumbent folds have not only rotated earlier mesoscale 
structures, but also folded the regional foliation and the 
flagstones of the high strain zones, they belong to the 
Group 2 of Williams & Zwart (1977) and must have 
formed after the main nappe emplacement. It is 
suggested that the late recumbent macrofolds were 
formed in a wide dextral strike-slip shear zone at large 
angles to the orogenic front in the way illustrated in Fig. 
9, the strike-slip shear being combined with a component 
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Fig. 12. Examples of tubular folds from the Grapesvare area; compare with Figs. 5, 6 and 8. (d) Shows exposure after 
sample 5 was removed (cf. Fig. 10a). Scale bars in (b)-(i) are 10 cm. 
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of concomitant shear along horizontai sh:~ar planes that 
has overturned the folds. If the main orientation of the 
layering was not horizontal prior to the dextral shearing, 
but had a small dip towards the hinterland, this would 
have contributed to the overturning of the folds. Stretch- 
ing lineations were developed subparallel to the fold 
axes, and older lineations and mesoscale folds were not 
only bodily rotated around the new fold axes, but also 
stretched as they were passively rotated towards the 
younger axes (cf. Saure 1985). A dextral shear of ~, = 2 
in an ESE direction would result in folding around 
roughly E-W axes with an extension of about 130--140% 
along the axes. It is therefore unlikely that the E-W folds 
originated with axes parallel to the nappe front. 

CONCLUSIONS 

(1) A tubular fold is defined as a highly non-cylindrical 
cone-shaped fold with hinge line angle to < 20* and for 
which a cross-section can be drawn so that to at the 
cross-section is less than 20 ° and the x :y  ratio is >1 (see 
Fig. la). The corresponding values for sheath folds are 
to < 90 ° and x: y > 1/4. 

(2) In shearing environments tubular folds may 
develop by the superposition of an overall layer-parallel 
simple shear on transverse non-cylindrical structures 
(i.e. structures with elongation at a small angle to the 
shearing direction). These may either be transverse 
folds with axial culminations and depressions or inter- 
ference structures. The general trend of the non-cylin- 
drical parts of the structural progenitors must be close to 
parallel to the later shearing direction. 

(3) Tubular folds cannot develop by the superposition 
of simple shear on previous subcircular layer 
irregularities or subhorizontal longitudinal folds (i.e. 
folds with axes subperpendicular to the shearing direc- 
tion). Transverse folds are a prerequisite for the forma- 
tion of tubular folds in simple shear environments. 

(4) Transverse folds must either have formed at a 
small angle to the later shearing direction or have been 
oriented at a high angle to the shear plane before their 
rotation towards the shearing direction. 

(5) Transverse folds may be the result of local shorten- 
ing along the orogen or they may have originated in 
ductile strike-slip zones at large angles to the orogenic 
front. 

(6) Tubular folds from the Grapesvare area fulfil the 
definition given above and occur in a structural setting 
that fits with models described. 

(7) The orientations of mesoscale folds, including 
tubular folds, in the Grapesvare area indicate that during 
the last stage of the emplacement of the Seve nappe, 
internal ductile strike-slip shear along a wide transverse 
zone overshadowed the 'normal' thrust-related internal 
shear in the area. 
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A P P E N D I X  

Layer-parallel simple shear superposed on domal structures and 
periclinal folds 

Figures Al(a)  and A2(a) show sections through a domal structure 
cut parallel to the ac plane and bc plane, respectively, of the simple 
shear that is to be superposed on it; a, b and c are the kinematic axes of 
the simple shear. Figures Al(b) and A2(b) show the same sections 
through the structure after it has been subjected to a horizontal simple 
shear with y = 2.5 (notice that dextral shears have positive values). 

From these cross-sections it is possible by simple trigonometric 
calculations, combined with well known equations for simple shear, to 
relate the shape of the sheared dome to its original shape and to ~. The 
designations of the different angles and line segments are given in the 
figures. The interlimb angle/3 (in Fig. A2b) is in this case the angle to. 

O0 

. . . . . . . . .  ( a )  , 

I~9o-.~ o ~ ^ l '  ~ 9o*-~ ° 

tts l 

90- O-v~ v2+O- ~ -90 
(b) ', ~ . , , - 9 0  

i t s  

Fig. AI.  Definition of geometrical elements in sections cut parallel to 
the ac-kinematic plane of a horizontal dextral simple shear. (a) Before 

shear. (b) After shear. 
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Fig. A2. Definition of  geometrical elements. (a) Section through the 
dome before shear,  the section is perpendicular to the section shown in 
Fig. Al (a ) ,  the two sections share the x axis. (b) Same section as in (a) 
but after shear; the section is perpendicular to the section shown in Fig. 

A l (b )  and contains the l~ direction. 

The equations derived below are valid both for domes and basins (in 
which case a0 = fl0 and Ii = /3) and for periclinal folds with their main 
axes either parallel to or at right angles to the a-kinematic axis. 

To find the apical angles a and fl: 
Combining Figs. A l ( a )  & (b) with the general equation for rotation 

of lines in the ac plane (Ramsay 1980, p. 90) one can write: 

co tv j  = c o t  9 0 -  + 7 = t a n ' ~ - + ~ '  (A1) 

COt V 2 ----" cot 90 + + )' = - t a n  -~- + ~, (A2) 

a = v2 - vl. (A3) 

From Figs. A2(a) and (b): 

14 = /.~(tan - ~ ) - '  (A4) 

1 ;  = l 3 tan = 14(COS q0) -t  (see Fig. A l b )  (A5) 

tan 2fl--- = tan -~  cos ~0 (A6) 

To find the ratio z:y and layer thicknesses: 
The z :y ratio in the monoclinic symmetric non-cylindrical fold can 

be measured either in a section at right angles to the central axis of the 
original dome (after shearing the 1~ axis of Fig. A l b )  or at right angles 
to the bisector of the apical angle (the lm axis of Fig. A l b ) ,  in which case 
z is replaced by z' .  

For small values of a (e.g. a < 20* as in tubular folds) the difference 
between the two measurements  is insignificant (a few % i fa  = 20* and 
~, is large). For larger values of a ,  z' :y will give the more appropriate 
value and in some instances be the only one possible because z does not 
cut the lower limb of the fold. 

From Figs. Al (a )  & (b): 

z__t = tan (90 - ~ - vl) = cot 0P + vl) (A7) 
t.; 

a s  

and 

Z~ 
--= = tan (v: + q - 90) = - c o t  (¢ + v:) 
r 

z = z~ + z2 =/ . ; (cot  (q + v~) - cot (q + v.,)), 

ao 1; = 12(COS¢)-~ = lj a n ~ c o s ¢  

(A8) 

(A9) 

Y = 2/3 (AIO) 

it follows that: 

( _z = ll(cot (q~ + Vl) - cot (q~ + vz) ) 2/3 cos q~ tan . ( A l l )  
Y 

Equation (A 11) is not valid for a0 = 0 (isoelinal folds), but the value 
of z: y in this case will differ insignificantly from the value obtained by 
putting for example a0 = 0.1 into equation (A 11). 

From Fig. Al (b) :  

( o ) , .  
cos v2+~-~-90 =~ 

Z' a 
- -  = Im tan - 
2 2 o.( ;) 
z'  = 2 / . , ' t a n ~ s m  v~ + q ~ -  - 

Combining this with equations (A9) and (A 10) gives: 

z'  " 2 
- -  = (A12) 

Y 13 tan 2 cos tp 

From Figs. Al (a )  & (b): 

ts = to (COS 2--2)-i = t,(sin vl) -t 

( t-A-I = sin v I cos (A13) 
t0 

,, . 
---" = sin v 2 cos • (A14) 
lo 

Note that tt and t 2 are the orthogonal thicknesses of the layers. For 
values of a < 20 ° the difference between these and the thicknesses 
parallel to z is however < 1.6%. 

From Figs. A2(a) & (b): 

t , .= t 0 ( c o s - ~ ) - '  = t3(cos ~ ) - '  

- -  = COS COS 
tO 

l 4 _ I~ 
- (cos ~0) - t  

t0 14 

= ,,, co s  ( c o s  
t_L 

t~. 2 k 2 ]  

(AI5) 

(AI6) 

(AI7) 

(AIg) 

(AI9) I'-~2 = sin I/2 COS COS • 
ly 

For small values of a,  hit.,, and t2/t~ will both be very close to z/y while 
for greater values of a,  h/ty < z/y and tz/ty > z/y 

t~ + t  z z 
(A20) 

2t~. y 


